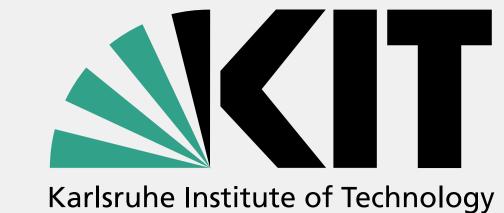
# Divide and Merge:

## Motion and Semantic Learning in End-to-End Autonomous Driving

Yinzhe Shen <sup>1</sup> Ömer Şahin Taş <sup>1,2</sup>

Kaiwen Wang<sup>1</sup> Royden Wagner<sup>1</sup>

Christoph Stiller 1,2





<sup>1</sup>Karlsruhe Institute of Technology (KIT)

<sup>2</sup>FZI Research Center for Information Technology

#### TLDR: solving the perception negative transfer problem boosts driving safety

The Problem: Current E2E models use a single feature vector to represent both semantics (what is it?) and motion (where is it going?). Forcing features to learn motion (prediction/planning) impairs their ability to represent semantics (detection/tracking). Perception performance drops when jointly trained with prediction and planning, which is known as perception negative transfer.

#### Our Solution (DMAD):

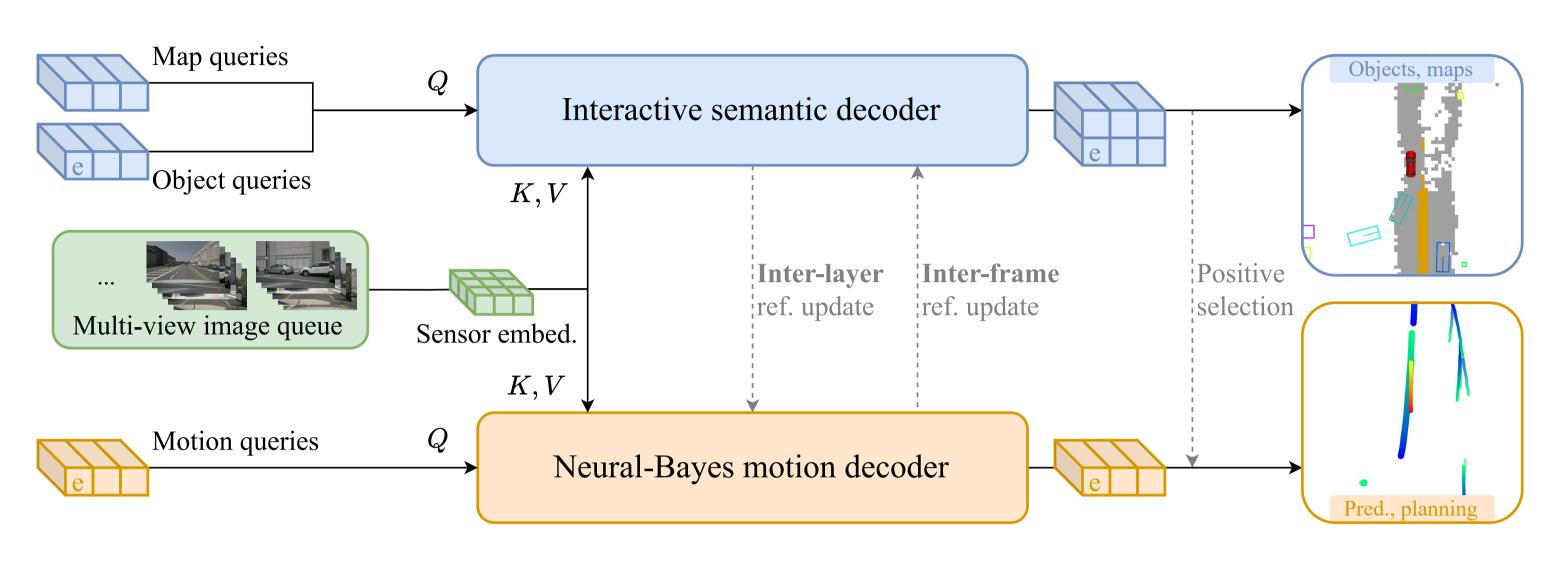
- Divide: Decouple heterogeneous tasks (motion vs. semantics) into parallel pathways, mitigating negative transfer.
- Merge: Enhance similar tasks (object vs. map) via interactive attention, promoting positive transfer.

**Results:** performance improvements across **all tasks** (object & map perception, prediction, and planning).



3-min video

#### Overview: the DMAD framework



**Structure:** Parallel semantic and motion learning in two pathways.

#### 1. Divide: Neural-Bayes motion decoder

Goal: Decouple motion from semantics to stop negative transfer.

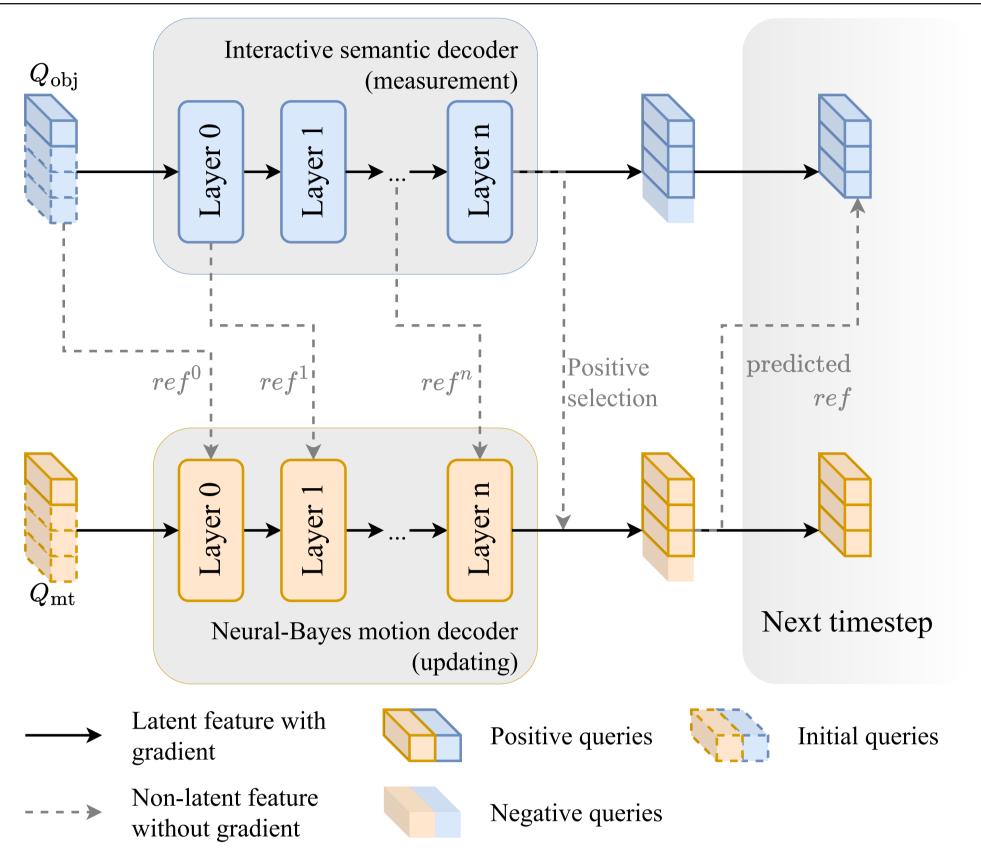
- Object representation: A query pair ( $Q_{\rm mt}$  and  $Q_{\rm obj}$ ) represents an object instance.
- Bayes filter inspiration: Measurement, updating and prediction.
- Recursive design: Recursively exchanging reference points between both kinds of queries.

#### 2. Merge: interactive semantic decoder

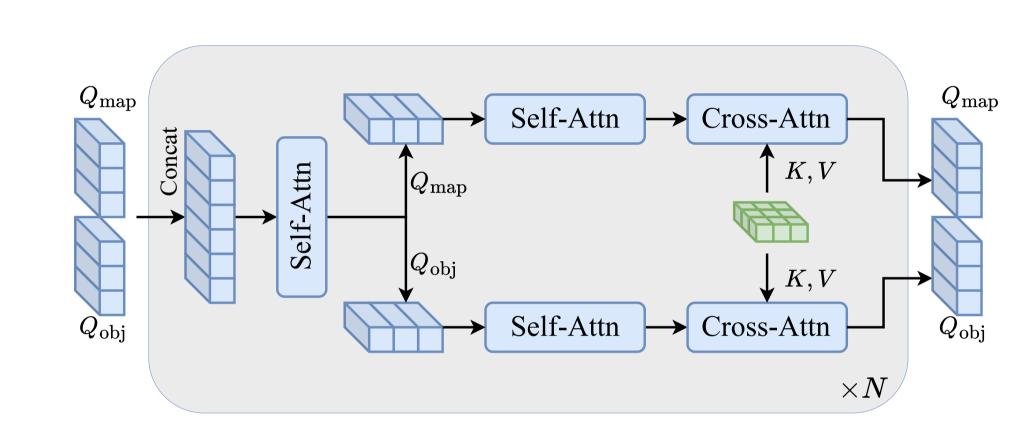
Goal: Enhance semantic consistency between objects and maps.

- Intuition: Cars are likely to be on drivable areas.
- Mechanism: A self-attention module allows  $Q_{\rm obj}$  and  $Q_{\rm map}$  to exchange context.

### **Module diagrams**



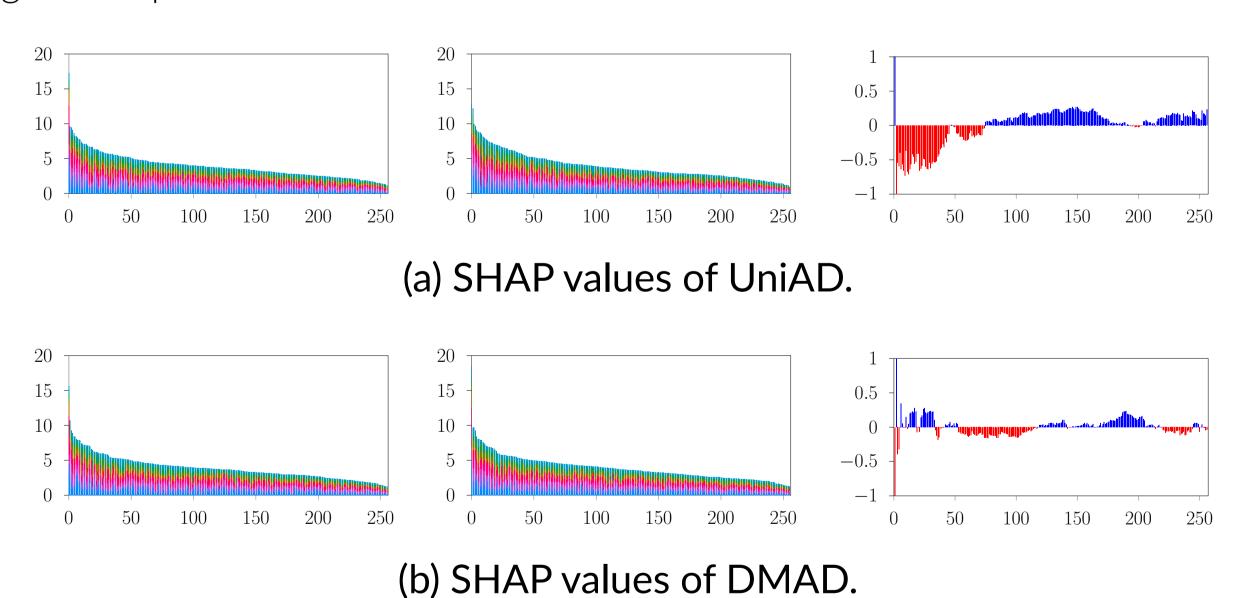
**Divide:** Neural-Bayes motion decoder



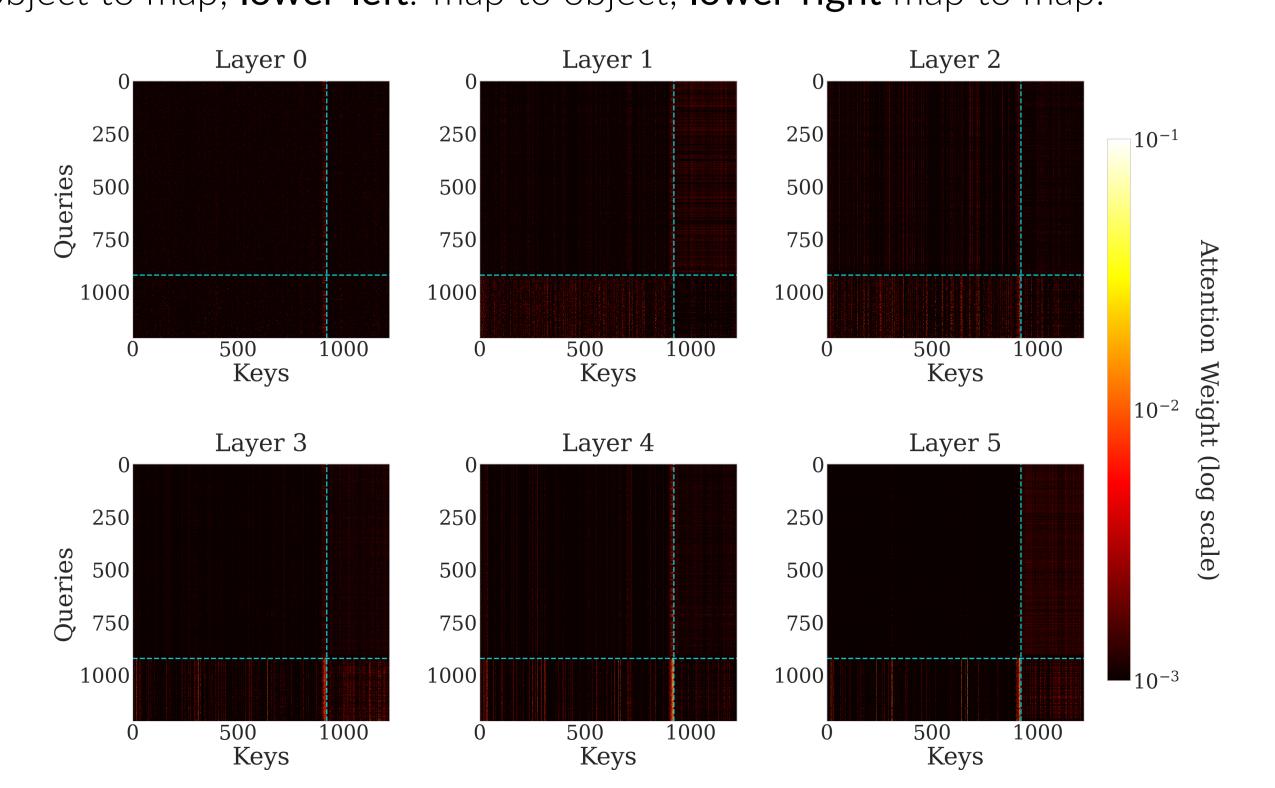
Merge: interactive semantic decoder

## **Visualizations**

1. SHAP values analysis: DMAD maintains the SHAP values of the object query across two training stages, which interprets the elimination of negative transfer. From left to right: stage 1, stage 2, and the difference (stage 1 minus stage 2). In the difference diagram, red indicates a negative value and blue signifies a positive value.



Object & map self-attention heatmaps: Cyan dashed lines divide a heatmap into four attention regions. upper-left: object to object; upper-right object to map; lower-left: map to object; lower-right map to map.



## Results

Applying "Divide and Merge" structure to UniAD and SparseDrive, resulting in **DMAD** and **SparseDMAD**.

1. Mitigating Negative Transfer: Experiments on nuScenes benchmark show that our methods mitigate the negative transfer in training stage 2. Performance changes in stage 2 are shown in parentheses (red: decline, blue: improvement).

| Method                                    | NDS†          | mAP↑                   | AMOTA†                 | AMOTP↓            |
|-------------------------------------------|---------------|------------------------|------------------------|-------------------|
| UniAD - stage 1                           | 0.497         | 0.382                  | 0.374                  | 1.31              |
| UniAD - stage 2                           | 0.491 (-1.2%) | 0.377 (-1.3%)          | 0.354 (-5.3%)          | 1.34 (+2.3%)      |
| DMAD - stage 1                            | 0.504         | 0.395                  | 0.394                  | 1.32              |
| DMAD - stage 2                            | 0.506 (+0.4%) | 0.396 (+0.3%)          | 0.393 (-0.3%)          | 1.30 (-1.5%)      |
| SparseDrive - stage 1                     | 0.531         | 0.419                  | 0.395                  | 1.25              |
| SparseDrive - stage 2                     | 0.523 (-1.5%) | 0.417 (-0.5%)          | 0.376 (-4.8%)          | 1.26 (+0.8%)      |
| SparseDMAD - stage 1 SparseDMAD - stage 2 |               | 0.424<br>0.427 (+0.7%) | 0.396<br>0.395 (-0.3%) | 1.23<br>1.23 (0%) |

2. Closed-loop planning: Experiments on NeuroNCAP demonstrate that our advances in perception transform to planning safety.

|             | NeuroNCAP scores ↑ |         |      |      | Collision rates (%) ↓ |         |      |      |
|-------------|--------------------|---------|------|------|-----------------------|---------|------|------|
| Method      | Stat.              | Frontal | Side | Avg. | Stat.                 | Frontal | Side | Avg. |
| UniAD       | 3.50               | 1.17    | 1.67 | 2.11 | 32.4                  | 77.6    | 71.2 | 60.4 |
| DMAD        | 4.40               | 1.47    | 2.07 | 2.65 | 14.8                  | 74.0    | 61.6 | 50.1 |
| SparseDrive | 4.42               | 2.96    | 2.30 | 3.23 | 22.4                  | 62.8    | 60.4 | 48.5 |
| SparseDMAD  | 4.57               | 3.14    | 2.42 | 3.37 | 18.4                  | 60.0    | 59.1 | 45.8 |

## Scan QR codes for paper & code





Code **Paper**